ivy.neural_net_functional.layers.conv1d(x, filters, strides, padding, data_format='NWC', dilations=1, f=None)[source]

Computes a 1-D convolution given 3-D input x and filters arrays.

  • x (array) – Input image [batch_size,w,d_in].

  • filters (array) – Convolution filters [fw,d_in,d_out].

  • strides (int or sequence of ints) – The stride of the sliding window for each dimension of input.

  • padding (string or sequence of ints) – “SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • data_format (string) – “NWC” or “NCW”. Defaults to “NWC”.

  • dilations (int or sequence of ints) – The dilation factor for each dimension of input.

  • f (ml_framework, optional) – Machine learning library. Inferred from Inputs if None.


The result of the convolution operation.

Supported Frameworks:

empty jax_logo empty tf_logo empty pytorch_logo empty mxnet_logo empty numpy_logo empty